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ABSTRACT 

An experimental test of a structure results in a database of frequency response 

functions from which natural frequencies and mode shapes are identified for the given 

boundary conditions of the test. The natural frequencies of a system under a variety of 

boundary conditions can be identified by applying artificial boundary conditions (ABCs) 

at measurement locations and obtaining the frequency response function for the 

unrestrained degrees of freedom. These frequencies are found without any physical 

alterations of the test boundary conditions. Use of the ABCs in sensitivity-based model 

updating and damage detection in conjunction with baseline data provides improved error 

localization and results in a more accurate finite element model. 
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I. INTRODUCTION 

In general, a finite element (FE) model is defined by a large number of physical 

parameters, but a modal test of a structure results in a small number of modal parameters 

which are used to modify the model parameters. It is always crucial, then, to improve or 

"update" a finite element model in order to produce a reliable, confident prediction of the 

structural response of a system. Adjusting the parameters that define the model can 

reduce inaccuracies in a FE model. These parameters include, but are not limited to 

dimensional properties, moduli of elasticity, and density.   If the parameters in the model 

can be adjusted for closer agreement with the measured parameters (identified in a modal 

test), then the model will provide a more accurate representation of dynamic response. It 

is important to remember that no FE model can exactly predict the dynamic response of a 

real structure, but can still provide reasonable and reliable results. This is the goal of 

model updating. 

One problem that has been historically associated with finite element model 

verification has been in measuring enough information. Procedures have been developed 

for measuring larger experimental databases. One such method that has been developed 

is known as "Perturbed Boundary Condition" testing. [Ref. 4] In this procedure, selected 

boundary conditions of a system under test are drastically changed and the system is 

retested. This method is effective, however the procedure requires that physical 

modifications be made to the structure and additional tests are necessary for each 

modification made. The result is increased time, increased work and most importantly in 

today's world, increased cost. 



A more efficient method is to identify additional and distinct mode frequencies 

from the same modal test that was performed to identify the mode frequencies of the 

standard system, without the need for physical modification of the structure. The 

additional frequencies and mode shapes correspond exactly to the mode frequencies 

found when combinations of measured coordinates are constrained to ground. These 

additional frequencies are therefore associated with different boundary conditions for the 

structure and no physical change in the boundary conditions has been made. [Ref. 1] 

Because the boundary conditions are not actually applied, they are termed 

"artificial boundary conditons", or "ABCs." For a single degree of freedom system the 

driving point antiresonance frequencies of a frequency response function (FRF) 

correspond to the frequencies of the structure with the driving point degree-of-freedom 

restrained to ground. The ABCs are imposed on the FE model and correspond to ideal 

constraints. With only one experimental database, this scheme yields a separate FE 

model for each ABC configuration. With the exception of the imposed boundary 

conditions, each model is identical and can be used to generate sensitivity data. In a set 

of spatially incomplete frequency response function data, the ABCs are the boundary 

conditions that define an "omitted coordinate system (OCS)," or "o-set." In performing a 

vibration test, a choice is made as to the set of coordinates to instrument with response 

transducers. This is the "analysis set," or the "a-set." With the choice of an a-set, the o- 

set is defined as the complimentary set of coordinates. For an FE model, the o-set is of 

finite dimension, but with respect to the test system, this set is of infinite dimension. The 

natural mode frequencies of the o-set systems appear as peaks in the impedance spectra. 

[Ref. 2] 



ABC configuration frequencies are available from any set of test data due to the 

fact that a spatially incomplete FRF matrix is identically equal to the FRF matrix that is 

calculated from the exact dynamic reduction. [Ref. 1] 

In addition to providing a larger number of frequencies for a system using one 

experimental database, the ABC also provides a means to eliminate or greatly reduce ill- 

conditioning in sensitivity equations. With the system artificially restrained at various 

measured coordinates, the columns of the sensitivity matrix which are found from the 

ABC configuration are linearly independent of the columns calculated from the baseline 

configuration. This reduces the difficulties in determining the parameters that are in 

error. Most importantly, in order to more accurately update the FE model, this 

configuration improves error localization. 





II. THEORY 

A.       OMITTED-COORDINATE SET 

The equation for the steady-state harmonic response for a full order model 

(without damping) is 

koa    k0 

-Q' 
maa      mao 

moa      moo 

Xa (2.1) 

where Q is the frequency of harmonic excitation and f is a vector of excitations consistent 

with x and k and m are the stiffness and mass matrices, respectively. The subscript "a" 

refers to the "a-set" and the subscript "o" refers to the "o-set". Equation 2.1 is also known 

as the impedance model and can be redefined as: 

Z'aa      ^ao 

Zoa      Z0o. 

Xa 

X„ 

^a 

It (2.2) 

where Z(Q) is the system impedance matrix evaluated at the forcing frequency, Q. 

Assuming that {f0} = {0} (static constraint - no excitation acting on the omitted 

coordinates), the exact relationship between the o-set and a-set coordinates is as follows: 

{x0} = [l-Q2k>00]
_1[-k-jkoa + Q2k;>oa]{xa} (2.3a) 

or 

W=[-z«rKlM (2.3b) 

The origin of the o-set system results from Eq. (2.3a). By definition, the bracketed 

inverse term is 
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L oo      oo J 

where Det[ • ] indicates the determinant and Adj[ • ] indicates the adjoint matrix. From 

Eq. (2.4), it is clear that the bracketed inverse term does not exist at those frequencies Q. 

which satisfy 

Det[l-Q2k>J=0 (2.5) 

Therefore the relationship between the a-set and o-set does not exist at those frequencies. 

The frequencies that satisfy Eq. (2.5) are the eigenvalues of the system defined by [k00] 

and [moo], the o-set system. This system is obtained by fully constraining all coordinates 

in the a-set to ground. The use of spatially incomplete FRF data in identification of the o- 

set mode frequencies implies the use of dynamic reduction applied to the structure under 

test. [Ref. 2] 

B.       EXACT DYNAMIC REDUCTION AND FRF MATRICES 

By equipping a structure with a finite number of response transducers, a reduced 

order model is defined, where the impedance of the reduced order model is not linearly 

dependent on the impedance of the full order model. The "full-order", exact FRF model 

of a structure is a FRF matrix of infinite dimension, 

Hx = 
H„,       H„ oa       —oo 

(2.6) 

where the number of coordinates in the o-set is infinite. The FRF matrix measured in a 

test is a matrix partition extracted from the infinite dimension matrix, 

HX = Haa (2.7) 



where the overbar notation indicates a reduced model. The matrix partition defined by 

Eq. (2.7) represents a structural dynamic model that has been reduced using exact 

dynamic reduction. From the partitioned inverse relation of the FRF matrix to its 

associated impedance, ZH = I. [Ref. 2] 

H. = (z«-zjz;xr (2-8) 

The presence of the o-set system dynamics in the term Z^ is seen in Eq. (2.8). The 

formula for the matrix inverse seen in Eq. (2.4) is applicable. Since every element in Z^ 

is singular at the natural frequencies of the o-set, Eq. (2.8) shows that elements of H^ 

will be singular at the o-set natural frequencies [Ref. 1]. Since the measured FRF matrix 

implicitly defines a dynamically reduced impedance model, an order n FRF matrix is 

calculated from the FE model, and the partition of this matrix which corresponds to the 

coordinates measured in a test is extracted (the a-set). The reduced model retains the 

entire modal content of the original model. 

C.       DRIVING POINT FREQUENCY RESPONSE FUNCTION 

Starting again with the equation of steady state forced response for a linear 

structural dynamic system, Eq. (2.2), rewritten (with damping) as 

[k - Q2m - jQC]{x} = {f} (2.9) 

where [k - D2m - jQCj = [Z] and C is the damping matrix. Transferring from physical 

to modal coordinates let 

{*} =  [0]{q} (2.10) 

Rewriting Eq. (2.9), 



[Z][0]{q} = {f} 

Premultiply by [0>]T, 

[0>]T[Z][<D]{q} = [O]T{f} 

[(DTkO - Q20TmO + jQOTCO]{q} = {3} 

Using orthogonality and assuming proportional damping, 

[cof-Q2+2JCQco]{q} = {3} 

where an is the natural frequency of the ith mode, £ is the damping ratio and 

(2.11) 

(2.12a) 

(2.12b) 

(2.13) 

[cof - Q2 + 2jC,Qa>] is a diagonal matrix. This matrix is inverted to find the modal 

frequency response: 

{q} 
1 

CO
2
-Q

2
+2J;QCOI 

{3} (2.14) 

Transforming back into physical coordinates by premultiplying by [O] and using 

{3} = [<I>]T{f}, the modal decomposition of the FRF matrix in physical coordinates is as 

follows: 

W=N 
l 

co2-Q2+2j;Qoi 
[o]T{f} (2.15) 

where [H(Q)] = [O] 
1 

o2-Q2+2j;Qcoj 

[Of. [H(Q)] can be written: 

NDOF 

[H(Q)] = Z MM 
p=1 cof-Q2+2j;Qcoi 

(2.16a) 



or any element, 

NDOF {<bP}(<t>P} 

P, of -Q +2j^Q©; 

This driving point FRF will be used in subsequent chapters in defining the ABC natural 

frequencies. 
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III. ABC CONFIGURATION FREQUENCIES 

A.       DRIVING POINT ANTIRESONANCES DEFINE ABC FREQUENCIES 

FOR A SINGLE A-SET COORDINATE 

The following example using a basic 2 degree-of-freedom (DOF) system, shows 

that driving point antiresonances correspond to the natural frequencies of the structure 

with the driving point DOF constrained to ground. 

mi ki m2       k2 

Figure 3.1 2 DOF system 

From Eq. (2.16b), the undamped driving point FRF is given by 

wlS (31> 

where §{ is a mass normalized mode shape element, ©r is the r* natural frequency, and Q 

is the forcing frequency. The frequency of the anti-resonance of Hn(Q) is given by 

= RX + RX (32) 
anti-res T>1     ,  T>2 K

       ' Kn+Kn 

where the modal residue is given by R-j = §\§]. It can be demonstrated that this 

frequency is identical to the natural frequency of the system in Figure 3.1, with the 

driving point DOF constrained to ground as in Figure 3.2. 

11 



Figure 3.2 2 DOF system with DOF #1 restrained to ground. 

Using a simplified numerical example, if the values for Figure 3.1 are set as mi=m2=1.0 

and ki=k2=1.0, the frequency of the single antiresonance is Qanti-res = V2 rad/sec, which 

is identically equal to the single natural frequency of the ABC system seen in Figure 3.2, 

which is oo = v2 rad/sec. 

B.       ABC CALCULATIONS FOR A 2 DOF SYSTEM 

The ABC frequencies are calculated using Eq. (2.8). A spatially incomplete FRF 

matrix is generated and inverted at each frequency. In a plot of the elements of the 

resulting impedance matrix versus frequency, the singular frequencies are also the ABC 

system frequencies. To show an example, the 2 DOF system shown in Figure 3.1 is used 

to calculate the driving point FRF Hi i(Q). The system contains two modes and the 

frequencies of these modes are coi = 0.618 rad/sec (fj = 0.0984 Hz) and co2 = 1 -618 

rad/sec (f2 = 0.2575 Hz), respectively. A plot of Hn(Q) is shown in Figure 3.3 and these 

modes can be seen on the plot. In addition to these two modes, it can also be seen that 

the anti-resonance frequency, as computed in Eq. (3.2), is Qanti-res = v2 =1.414 rad/sec. 

12 
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Figure 3.3 Hi i(Q) versus Q 

Using Eq. (2.8), the ABC system frequency can be found by calculating H"] (fi) where 

the a-set is defined as DOF # 1, and H ~l (€1) is the scalar inverse of Hi i(Q). H ^ (Q) is 

plotted versus Q in Figure 3.4. The single singular frequency corresponds to the anti- 

resonance frequency for this case (Qantwes = I-414 rad/sec). This singular frequency is 

also the natural frequency of the ABC system that was obtained by constraining DOF #1 

to ground (as in Figure 3.2). Most importantly, this simple example demonstrates the 

power and usefulness of Eq. (2.8) and shows that driving point antiresonances correspond 

13 



0.2       0.4       0.6       0.8 1 1.2       1.4       1.6       1.8 
Frequency (rad/sec) 

Figure 3.4 H J",1 (Q) versus Q. 
(Natural Frequency of ABC system) 

directly to the natural frequencies of the system with the driving point coordinate 

constrained to ground. [Ref. 1] 

C.       ABC FREQUENCY CALCULATIONS FOR A FREE-FREE BEAM 

To further demonstrate the usefulness of the ABC technique, a free-free beam is 

examined. The model consists of 10 beam elements and each element contains two 

nodes. The nodes have 2 degrees-of-freedom, translational and rotational, giving the 

system a total of 22 DOF. The odd-numbered DOF are the translational degrees and the 

even-numbered DOF are the rotational degrees. The properties of the beam are as 

follows: length = 60 inches, El = 5.5xl05 lbf-in2, p = 0.283 lbf/in2, and cross-sectional 

14 



area = 0.75 in2. Response transducers (accelerometers) are placed at every other node, at 

the translational DOFs #1,5,9,13,17, and 21. This model is shown in Figure 3.5 

fl       ü       Ü       fl       fl       fl 

J n 

Figure 3.5 Free-free beam - Transducer: [] 

The set of coordinates chosen to be instrumented with response transducers is the a-set, in 

this example defined as [1 5 9 13 17 21]. It can be assumed by the given setup, that 

excitation is applied at each of the a-set DOFs, resulting in a 6 by 6 matrix. The 

impedance matrix, H;] (Q), the scalar inverse of Hn(Q), is calculated at excitation 

frequencies from 0-800 Hz. Figure 3.6 shows the driving point FRF for the system. 

0    100   200   300   400   500   600   700   800 
Frequency (Hz) 

Figure 3.6 Driving Point FRF Hn(Q) for Free-Free Beam 
(a-set DOFs: 1,5,9,13,17,21) 
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The ABC system frequencies are found by calculating the impedance matrix, H~] (Q). 

By plotting the 1,1 element (H"1 (Q)) of the matrix, the ABC system frequencies can be 

seen (Figure 3.7). 

1 i 1 

-f j V   / 
r \ A 

if Y Y Y V 
\ / 
/ 

1 1 y 

0 100 200 300 400 500 600 700 800 
Frequency (Hz) 

Figure 3.7 H,' (Q) for Free-Free Beam 
(a-setDOFs: 1,5,9,13,17,21) 

These ABC frequencies correspond exactly to the natural frequencies of the system with 

all of the measured coordinates (a-set) constrained to ground. This configuration is 

shown in Figure 3.8. Confirming the results, the natural frequencies of a beam with 

pin restraints in the locations shown in Figure 3.8 are calculated to be: 346.70, 385.13, 

16 



A-& ~ A • A • ir%> 
Figure 3.8 ABC Configuration - a-set: [1 5 9 13 17 21] 

(Measured coordinates restrained to ground) 

482.73, 610.23, and 735.11 Hz. These frequencies correspond exactly to the peaks 

shown in Figure 3.7. 

A common vibrational test involves two shakers placed to excite all modes in the 

bandwidth of interest. To simulate this, the next ABC configuration set will be DOFs 1 

and 17, defined as the translations at nodes 1 and 9. Performing the same calculations as 

above, the impedance matrix, H^ (Q), is obtained. Looking at the 1,1 element of this 

matrix, an additional set of ABC frequencies is found. A plot of H[' (Q) over the range 

0-800 Hz is shown in Figure 3.9.  The equivalent system is a beam with pin restraints at 

node 1 and node 9. The natural frequencies of this system are calculated to be 20.45, 

63.57,112.30,215.05,364.61, 544.16, and 669.70 Hz. These frequencies correspond 

exactly to the peaks shown in Figure 3.9. The equivalent system is shown in Figure 3.10. 

17 
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Figure 3.9 H"' (Q) for Free-Free Beam 
(a-setDOFs: 1, 17) 

M 15 
Figure 3.10 ABC Configuration - a-set: [117] 

(Measured coordinates restrained to ground) 



IV. ABC CONFIGURATION IN SENSTIVITY-BASED UPDATING 

A.        SENSITIVITY MATRIX DEFINED 

As previously mentioned, the disparity in the number of known parameters 

(measured modal parameters) versus the number of parameters to be adjusted in order to 

update a FE model defines an underdetermined problem. Another significant difficulty is 

that the parameters that are in error are unknown. Sensitivity-based updating is used for 

error localization in order to find those parameters that require adjustment. The ABC 

configuration frequencies can be used in addition to, or instead of, the standard baseline 

system mode frequencies in model updating and damage detection. The ABC 

frequencies correspond to the same structural system as the baseline frequencies, but with 

different boundary conditions. The governing equation for sensitivity-based updating is 

{A©} = [T]{ADV} (4.1) 

where {Aco} is a vector of natural frequency errors. The errors are the difference between 

the experimental natural frequencies and the analytical natural frequencies {©x- coa}. 

The {ADV} term is the vector of changes to be calculated for specified model 

parameters, known as "design variables," and [T] is the sensitivity matrix. This matrix is 

solved using the eigensensitivity method shown in Ref. [6]. [T] is defined as: 

{<t>baseiine}T[Ak] {^baseline}, where Ak = [kx - ka] and [T] is of size m x p where m is the 

number of modes and p is the number of design variables used. Each ABC system 

defines additional rows of Eq. (4.1), defining the equation, 

{Aw^lTKADV} (4.2) 
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where Tk = d(£>*/dDV], and co ■ is the 1th natural frequency of the kth ABC configuration 

system. Baseline system quantities are identified with the superscript "0" and ABC 

systems are identified with superscripts from 1 to "k" where k is the total number of ABC 

systems used. Combining the equations, 

{ACO°} 

{AO)'} 
' = ' 

\[r\ 
[r] 

[in 
{ADV} (4.3) 

The degree of coupling between the ABC systems and the baseline system can be 

adjusted by deleting or retaining individual columns of [Tk]. Partial coupling can be 

established by partitioning such that some of the DV's are associated with the baseline 

system only, some with both the baseline and the ABC system, and some with the ABC 

system only. [Ref. 1] 

Using the ABC system sensitivities helps to eliminate or greatly reduce the 

problem of poorly conditioned or rank deficient [T] matricies. Columns of [T ] can be 

replaced with columns of [Tk] in order to improve conditioning. Two closely spaced 

elements in a model will always have columns of [T°] which are nearly dependent. This 

prevents the localization of the error and discrimination of the damage between the 

elements. By replacing a column of [T°] with a column of [Tk], the columns are no 

longer dependent and error localization and damage detection is improved, resulting in a 

more accurately updated FE model. 
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B.        IMPROVED CONDITIONING USING ABC SENSITIVITIES 

Applying the case of a free-free beam, the sensitivity matrix [T] is generated for 

the undamaged structure model in order to solve for the changes in the element El values 

representing damage, i.e. AEI = ADV, and 

{o0} = [T°]{AEI} (4-4) 

To demonstrate, sensitivities will be calculated for all 10 elements and for the first 10 

elastic modes resulting in a [T°] matrix of size 10 by 10. A calculation of the rank of this 

matrix reveals that it is, in fact, rank deficient: Rank(T°) = 5. This will not provide a 

fully determined solution for {AEI}. With excitation applied at DOFs 1 and 17, it is 

possible to identify the ABC system frequencies with these DOF constrained to ground. 

(See Figures 3.9 and 3.10) The corresponding [T1] matrix is generated and is also of size 

10 by 10, 

{©1} = [T1]{AEI} (4-5) 

with the calculated rank:        RankCT1) = 10. 

The [T1] matrix is full rank due to the asymmetric ABC configuration. 

C.        COMPUTER SIMULATED DAMAGE DETECTION USING ABC 

SYSTEM SENSITIVITIES 

Four examples have been constructed to demonstrate the usefulness of a single 

ABC system set of frequencies and sensitivity matrix in lieu of the standard system set. 

The ABC system described by Figures 3.9 and 3.10, a-set: [1 17], is again used. In these 

four examples, changes in elemental El's have been user inputted to simulate a damaged 

structure. Two subsequent examples will show the usefulness of this technique when 

damage location and magnitude is unknown. 
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1. Damage Detection: Example 1 

For this example, a 10% reduction in El is made at elements #2 and #3. The 

natural frequencies of the undamaged (FE/Analytic) and simulated damaged 

(Test/Experimental) models are shown in Table 4.1. Using the baseline system, the 

largest full rank submatrix of [T°] is 5 by 10, and the best solution for the damage was the 

solution using modes 1 to 4. This solution is shown in Figure 4.1(a). The height of the 

Mode 
Number 

FE/Analytic 
(Hz) 

Test 
(Hz) 

% Error 

1 31.30 31.13 0.5 
2 86.30 84.99 1.5 
3 169.29 166.37 1.7 
4 280.26 276.61 1.3 
5 419.78 414.52 1.3 
6 588.73 581.00 1.3 
7 788.17 779.81 1.1 

8       _J 1018.0 1007.8 1.0 
9 1264.6 1252.0 1.0 
10 1679.4 1662.9 0.9 

Table 4.1 Example 1: FE and Test Frequencies and Error 

bars in the plot indicates the magnitude of the error for each element. In this case, we 

know that the exact solution is 10% in both element #2 and element #3. If the ABC 

system sensitivities [T1] and mode frequencies are used, the largest full rank submatrix is 

10 by 10, and the best solution for the damage was the solution using all 10 modes. This 

solution is shown in Figure 4.1 (b). This was chosen as the first example because in this 

case, the baseline system provided a reliable result. It should be noted that the ABC 

system also provided reasonable results (other elements were affected by 1% or less). It 
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will be seen in the following examples that the baseline system rarely provides reliable 

results and in many circumstances actually provides results in misleading information. 
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Figure 4.1 Damage Detection - Example 1 
(a) Baseline (b) ABC system 

2. Damage Detection: Example 2 

For this example a 10% reduction in El is made at element #4 and a 15% 

reduction in El is made at element #6. The natural frequencies of the undamaged 

(FE/Analytic) and simulated damaged (Test) models are shown in Table 4.2. Using the 

baseline system, two solutions seemed to localize the error. The first 

was the solution using modes 1 to 5. This solution is plotted in Figure 4.2(a). The 

second was the solution using modes 1 to 4 and this solution is shown in Figure 4.2(b). 

However, it was known from the start that the damage was located at elements 4 and 6. 
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Mode 
Number 

FE/Analytic 
(Hz) 

Test 
(Hz) 

% Error 

1 31.30 30.04 4.0 
2 86.30 85.16 1.3 
3 169.29 167.19 1.2 
4 280.26 276.22 1.4 
5 419.78 413.91 1.4 
6 588.73 581.20 1.3 
7 788.17 778.01 1.3 
8 1018.0 1004.5 1.3 
9 1264.6 1246.0 1.5 
10 1679.4 1656.7 1.4 

Table 4.2 Example 2: FE and Test Frequencies and Error 

In a standard test, there would be no prior knowledge of damage and the results using the 

baseline system would appear to be accurate. This misleading information would not 

help in the updating of the FE model. Using the ABC system and modes 1 through 8, the 

solution shown in Figure 4.2(c) is obtained and proves to be a reliable solution based on 

the known error. 
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Figure 4.2 Damage Detection - Example 2 
(a) & (b) Baseline (c) ABC system 
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3.        Damage Detection: Example 3 

For Example 3, two elements at opposite ends of the beam were chosen. A 15% 

reduction in El was made at element #1 and a 20% reduction in El was made at element 

#10. The natural frequencies of the undamaged and simulated damaged models are 

shown in Table 4.3. Using the baseline system, the only solution that provided any 

Mode 
Number 

FE/Analytic 
(Hz) 

Test 
(Hz) 

% Error 

1 31.30 31.29 0.0 

2 86.30 86.21 0.1 

3 169.29 168.78 0.3 

4 280.26 278.44 0.6 

5 419.78 415.12 1.1 

6 588.73 579.27 1.6 

7 788.17 772.08 2.0 

8 1018.0 994.76 2.3 

9 1264.6 1240.1 1.9 

10 1679.4 1646.6 2.0 

Table 4.3 Example 3: FE and Test Frequencies and Error 

error localization was the solution using modes 1 to 5. This solution is shown in Figure 

4.3(a). It is immediately obvious that this solution is incorrect, as it indicates an error of 

approximately 42% in element #10 and no damage in any other elements. Using the 

ABC system and modes 1 through 7, an improved solution is obtained and is shown in 

Figure 4.3(b). 

4. Damage Detection: Example 4 

For the fourth example three elements were chosen to have reduced El values. A 

10% reduction in El is made at element #3, a 15% reduction at element #4, and a 20% 
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reduction at element #5. The natural frequencies of the undamaged and simulated 

damaged models are shown in Table 4.4. The best baseline system solution was obtained 

using modes 1 to 3 and is displayed in Figure 4.4(a). The solution localized error in three 

elements, but localized damage in element #7 instead of element #4. This is obviously 

incorrect. Using the ABC system and the same modes (1 to 3), the solution displayed in 

Figure 4.4(b) was obtained. This solution also is incorrect and misleading. By using the 

ABC system and modes 1 through 6, however, an improved and correct solution is 

obtained and is shown in Figure 4.4(c). It is important to note that in this fourth example, 

the ABC system also provided one misleading solution. Given the number of modes 
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Mode 
Number 

FE/Analytic 
(Hz) 

Test 
(Hz) 

% Error 

1 31.30 29.87 4.6 
2 86.30 83.84 2.9 
3 169.29 164.68 2.7 

4 280.26 273.90 2.3 

5 419.78 409.57 2.4 

6 588.73 574.71 2.4 

7 788.17 768.17 2.5 

8 1018.0 993.73 2.4 

9 1264.6 1231.7 2.6 

10 1679.4 1637.8 2.5 

Table 4.4 Example 4: FE and Test Frequencies and Error 

used, the solution using the first six modes would be considered more reliable even if the 

damage had not been known a priori due to its improved conditioning. 
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Figure 4.4 Damage Detection - Example 4 
(a) & (b) Baseline (c) ABC system 
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For the final two examples, a random number generator is used to place errors in 

1 to 2 elements of the model by reducing El in each of those elements by up to 50%. 

Using this method, the damage location and magnitude is unknown and left to be 

determined by using both baseline and ABC system sensitivities. Examining the element 

El matrix from the MATLAB code checks the results determined by the sensitivities. 

5. Damage Detection: Example 5 

The damage detection results obtained by using the maximum number of modes 

possible in the baseline system, five (rank=5), are shown in Figure 4.5 (a). It appears 
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Figure 4.5 Damage Detection - Example 5 
(a) & (b) Baseline (c) ABC system 

from this plot that element #6 is the damaged element. However, when modes 1 through 

4 are used in the baseline system (Figure 4.5(b)) it appears that #5 is the "damaged" 

element. By using modes 1 through 5 in the ABC system, Figure 4.5(c) was obtained and 
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verified that #5 was the damaged element. This was believed to be the best localization of 

error and the element El matrix was checked for verification. The only damaged element 

was element #5 and the difference between damaged and undamaged was a 23 percent 

reduction, which corresponds to the values in Figure 4.5(b) and (c). Once again, the use 

of the ABC system provided reliable results when, without the ABC configuration, the 

baseline information alone may have been misleading. 

6.        Damage Detection: Example 6 

Once again, the results using the first five modes with baseline sensitivity are 

displayed in Figure 4.6(a). Using this solution, it appears that the damage is located in 

elements #2 and #6. With the first four modes, the solution shows damage in elements #2 

and #5 as shown in Figure 4.6(b). Figure 4.6(c) shows the results obtained when using 

all 10 modes and the ABC system sensitivity. It confirms that elements #2 and #5 are the 
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Figure 4.6 Damage Detection - Example 6 
(a) & (b) Baseline (c) ABC system 
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damaged elements. Checking the El element matrix, it was confirmed that element #2 

had a 10% reduction in El and element #5 had a 3% reduction in El. These values 

correspond to those seen in Figure 4.6(b) and (c).   In summary, all 6 examples have 

provided valuable information concerning damage detection. Many times, a reasonable 

solution can be obtained using baseline sensitivities. However, with this always seems to 

be some misleading information when the baseline solutions are used. The ABC system 

will most always provide the proper solution, but is not perfect either. When the ABC 

system is used in conjunction with the baseline system, improved and accurate solutions 

are obtained. Nowhere is this clearer than in the previous two examples. 
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V. EXPERIMENTAL APPLICATION 

So far, the use of the ABC configuration to determine natural frequencies of a 

system under a variety of boundary conditions has been demonstrated using MATLAB 

and computer generated finite elements. To fully examine this process, a laboratory 

experiment was constructed. 

A.       EQUIPMENT SETUP 

A mild steel beam, 60.75 inches in length, 1.5 inches wide and 0.5 inches thick, 

was suspended from the overhead by monofilament fishing line in order to represent a 

free-free beam with two rigid body modes. The beam was instrumented with 5 PCB 

Piezotronics Inc. accelerometers, each 15.25 inches apart. Each of the accelerometers 

was wired into a 5 kHz Zonic System 7000 front end digital signal processor (DSP) 

consisting of 2 digital chassis with 16 channels each and 1 HP workstation. An excitation 

was applied successively to the opposite side of each of the accelerometers by a 25 lb 

peak force shaker and lateral excitation stand Model 2050A, manufactured by The Modal 

Shop, Inc. A MB Dynamics Model SS250VCF amplifier set to constant voltage powered 

the shaker. The shaker was operated at 0.25 volts (rms). The applied force was wired 

into the DSP as Channel 1, and the 5 accelerometers as Channels 2 through 6, 

respectively. The Zonic system was connected to the I-DEAS Master Series 5 software 

operated in the Signal Processing mode. The laboratory setup is shown in Figure 5.1. 
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Figure 5.1 Laboratory Setup 



B. DATA COLLECTION 

Using I-DEAS, FRFs were collected when the force was applied at each node. 

For each reference (i.e. for the force applied at each node), the response at each node was 

measured. I-DEAS was configured to measure 1601 spectral lines over frequencies 

ranging from 0 -2000 Hz. Each shaker provided a 1601 by 5 matrix containing the 

complex amplitudes every 1.25 Hz for a given excitation. The combined result provided a 

1601 by 25 matrix for the entire system. This matrix was exported to MATLAB in order 

to compute the o-set frequencies of the system. 

C. O-SET FREQUENCIES USING EXPERIMENTAL DATA 

In order to establish a comparison and validate the results obtained in the 

laboratory, a finite element model of the beam was created. The FE model contained the 

ft »9 
given dimensions of the beam and a Modulus of Elasticity (E) of 27.3 x 10 lbf/in , 

corresponding to mild steel. This E value was chosen in order to bring the baseline 

model frequencies closer to the test frequencies. It was composed of 64 elements with 65 

nodes (2 DOF per node for 130 DOF total). Nodes 1,17, 33, 49, and 65 corresponded to 

transducer locations 1 through 5, respectively, on the real beam. 

The theories presented earlier and demonstrated through computer simulation 

were applied to the experimental data. By using ABC configurations, the frequencies for 

the beam under 30 different boundary conditions can be found from the baseline (free- 

free) information without having to reconfigure the experimental setup. Table 5.1 

contains the first ten natural frequencies (in Hz) of the system computed from the test and 

compares them to the natural frequencies determined by the FE model. Figure 5.2 

33 



contains a plot of the 1,1 element of the FRF (H(Q)) matrix and displays the first five 

modes. 

FE/Analytic (Hz) Test (Hz) % Difference 
29.1 29.0 0.3 
80.3 79.5 1.0 
157.4 155.3 1.3 
260.2 257.8 0.9 
388.7 388.3 0.1 
542.8 534.0 1.6 
722.7 709.0 1.9 
928.3 912.9 1.7 
1159.6 1104.1 4.8 
1416.6 1393.5 1.6 

Table 5.1 FE & Test frequencies for the free-free beam 
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Figure 5.2 Hn(Ü) for free-free beam 
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The first o-set system computed was the system with node 1 restrained to ground, 

corresponding to the system shown in Figure 5.3. The FRF matrix was inverted to find 

the impedance matrix for the a-set (H^ (Q)) and the peaks of the impedance matrix 

correspond directly to the natural frequencies of the system with node 1 restrained to 

ground. These o-set frequencies were compared to the o-set frequencies determined by 

the FE model and are shown in Table 5.2. A plot of H^ (Q) showing the first five 

frequencies is seen in Figure 5.4. 

^= 

Figure 5.3 ABC configuration: Node 1 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
20.0 20.0 0.0 
65.0 65.6 0.9 
135.7 136.0 0.7 
232.1 235.0 1.2 
354.1 356.2 0.6 
501.9 503.8 0.4 
675.3 669.6 0.8 
874.5 873.3 0.1 
1099.3 1080.7 1.7 
1349.9 1354.1 0.3 

Table 5.2 FE & Test Frequencies for Node 1 restrained to ground 

35 



0 50       100      150      200      250      300      350      400      450      500 

Figure 5.4  H J (Q) for Node 1 restrained to ground 

In both cases, the test frequencies correspond nicely with the frequencies 

predicted by the FE model. This validates the theories and expectations described in the 

earlier chapters. With only free-free data available, the natural frequencies of the system 

under any boundary configuration can be found. The number of transducers (i.e. 

measurement locations) limits the number of systems for which frequencies are available 

and in the given example, up to 30 system frequencies can be found. Six more ABC 

systems were computed and the results for the first ten modes are tabulated in Tables 5.3 

- 5.8. The system configurations and H^ (Q) plots are shown in Figures 5.5 - 5.16. 
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Figure 5.5 ABC Configuration: Nodes 1 & 2 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
6.8 7.2 5.9 

44.3 44.7 0.9 
125.7 125.9 0.2 
228.9 231.9 1.3 
293.4 297.0 1.3 
443.1 443.9 0.2 
652.7 648.4 0.7 
868.4 867.9 0.1 
990.2 980.5 1.0 
1252.2 1253.1 0.1 

Table 5.3 FE & Test Frequencies for Nodes 1,2 restrained to ground 
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Figure 5.6  H J (Q.) for Nodes 1,2 restrained to ground 
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Figure 5.7 ABC Configuration: Nodes 1,4 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
20.0 20.0 0.0 
49.4 49.1 0.4 
108.0 110.0 1.8 
219.5 223.9 2.0 
349.6 347.6 0.6 
427.6 427.2 0.1 
606.6 618.8 2.0 
848.7 856.0 0.9 
1092.5 1045.2 4.3 
1228.7 1229.7 0.1 

Table 5.4 FE & Test Frequencies for Nodes 1,4 restrained to ground 
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Figure 5.8  H^ (Q) for Nodes 1,4 restrained to ground 
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A   A   A 
Figure 5.9 ABC Configuration: Nodes 1,2,3 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
14.5 15.0 3.4 
96.5 96.8 0.3 

220.8 225.1 1.9 
282.2 283.4 0.4 
375.0 381.1 1.6 
588.3 537.4 *8.7 
853.2 858.5 0.6 
970.9 957.7 1.4 
1133.3 1126.9 0.6 
1489.3 1463.6 1.7 

Table 5.5 FE & Test Frequencies for Nodes 1,2,3 restrained to ground 
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Figure 5.10  H J (Q) for Nodes 1,2,3 restrained to ground 
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Figure 5.11 ABC Configuration: Nodes 1,2,3,4 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
49.3 48.3 2.0 

215.3 220.0 2.2 
277.4 281.2 1.2 
367.5 369.5 0.5 
448.2 448.1 0.0 
841.6 848.2 0.8 
961.6 956.5 0.5 
1123.0 1123.2 0.0 
1260.9 1258.4 0.2 
1879.2 1895.6 0.9 

Table 5.6 FE & Test Frequencies for Nodes 1,2,3,4 restrained to ground 
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Figure 5.12  Hj (Q) for Nodes 1,2,3,4 restrained to ground 
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A    A    A    A~-A 

Figure 5.13 ABC Configuration: Nodes 1,2,3,4,5 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
205.6 210.6 2.4 
239.8 245.2 2.3 
321.1 328.2 2.2 
415.0 422.1 1.7 
822.3 831.1 1.1 
892.4 894.8 0.3 
1040.7 1043.7 0.3 
1200.4 1214.1 1.1 
1850.3 1869.1 1.0 
1954.5 1952.8 0.1 

Table 5.7 FE & Test Frequencies for Nodes 1,2,3,4,5 restrained to ground 
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Figure 5.14  Hj (Q) for Nodes 1,2,3,4,5 restrained to ground 
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Figure 5.15 ABC Configuration: Nodes 1,3,5 restrained to ground 

FE/Analytic (Hz) Test (Hz) % Difference 
51.4 52.2 1.6 
80.3 82.4 2.6 

205.6 210.7 2.5 
260.2 266.5 2.4 
462.5 471.1 1.9 
542.8 554.8 2.2 
822.3 831.8 1.2 
928.3 940.9 1.4 
1284.8 1306.8 1.7 
1416.6 1428.6 0.8 

Figure 5.8 FE & Test Frequencies for Nodes 1,3,5 restrained to ground 
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Figure 5.16  H^ (Q) for Nodes 1,2,3,4,5 restrained to ground 
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D.       DAMAGE DETECTION USING EXPERIMENTAL DATA 

The next logical step to take is to try to localize error in a FE model by using the 

experimental data. In Chapter IV, sensitivity-base damage detection was used to localize 

error in a "damaged" FE model by using another FE model with no damage. We now 

have a set of data for a real beam that has no damage. The experimental data is now 

needed in order to find the error in a FE model of the same system. To perform these 

calculations, an FE model was again created, this time of 16 elements. Fewer elements 

were used in order to decrease computational time; the actual change in frequencies from 

those determined using 64 elements was negligible. A 20% reduction in El was made at 

element #8 in the FE model. A model of the free-free beam (baseline) was created as 

well as a model of the ABC system with nodes 1 and 4 restrained to ground. 

To check the method, FE frequencies were substituted for the test frequencies in 

both the baseline system and the ABC system.   The results are shown in Figure 5.17. 
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Figure 5.17 Error localization using FE frequencies 
(a) Baseline (b) ABC system 
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The error was localized using the first two modes of the baseline system (Figure 5.17(a)) 

and then was confirmed using the first two modes of the ABC system (Figure 5.17(b)). 

This validated the method and now the FE frequencies were replaced by the actual test 

frequencies for the system. These results are shown in Figure 5.18. 
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Figure 5.18 Error localization using test frequencies 
(a) Baseline (b) ABC system 

The first two modes were again used for both the baseline system (a) and the 

ABC system (b) since these were the modes that resolved the error when the FE 

frequencies were used. This time, however, the baseline system localized a 20% error in 

element #8 as well as a 13% error in element #12. Clearly this is incorrect. The ABC 

system provided better results, but also indicated error in element #12 at 5%. The 

differences in the frequencies between the test data and the FE data, however slight, are 
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the sources of the discrepancies. In the first two modes of the free-free beam, the test 

frequencies differed from the FE frequencies by 0.3% and 1.0%, respectively (see Table 

5.1). For the ABC system's first two modes, the test frequencies differed by 0.0% and 

0.4%, respectively (see Table 5.4). Therefore, in order to detect and localize errors in FE 

models with test information, it is imperative that the error between test and FE 

frequencies be minimized. Suggested approaches on how to achieve this are proposed in 

the Recommendations. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this thesis was to examine a method in which the natural 

frequencies of a system under a variety of boundary conditions could be found by using 

only one experimental database. Previously, experiments had to be reconfigured in order 

to find more than the baseline frequencies. This results in more time and inevitably, an 

increase in cost for structural analysis. Secondly, a method by which model error 

detection and localization could be improved was investigated. 

A.        CONCLUSIONS 

The following conclusions can be drawn form the analyses presented: 

1. The natural frequencies of a structure under various boundary conditions are 

available from a baseline FRF matrix. Inverting a spatially incomplete FRF at 

each frequency results in an impedance spectrum whose peaks correspond to 

the natural frequencies of the structure restrained to ground at measure 

coordinates. 

2. With both the baseline and ABC frequencies available, structural sensitivities 

can be generated from both the baseline and from the system with boundary 

conditions artificially applied corresponding to the FRF matrix (a-set). The 

addition of the ABC data has proven to be valuable in conjunction with the 

baseline information in localizing error and/or damage. 
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B.       RECOMMENDATIONS 

The following are areas of recommended improvement to continue with this field 

of study. The first two are recommendations for improving sensitivity-based error 

localization when using test data. 

1. Curve fit the FRF in I-DEAS prior to exporting the files into MATLAB. 

2. Once in MATLAB, curve fit the impedance spectra near the ABC frequency 

to identify the ABC natural frequencies. 

3. Continue with the use of ABC systems on more advanced structures to further 

this study. 
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APPENDIX  MATLABCODE 

MAIN PROGRAMS 

Build2Beams.m 

% This program assembles the mass and stiffness matrices for 2 beams, with user 
% defined boundary conditions referred to as "BeamA" (analysis) and "BeamX" 
% (experimental). The program can be run in both "build" and "read" modes. In the 
% "build mode," the user provides baseline data for BeamA, assumed to be a 
% homogeneous, uniform beam. Data provided: 
% 
% (1) Beam length 
% (2) Number of elements 
% (3) Nominal El 
% (4) Nominal cross-sectional area 
% (5) Nominal weight density 
% 
% The program then prompts the user for instructions on how to modify "BeamA" 
% data to arrive at "BeamX" data. The user can modify element El values and the 
% modification can be applied to either a single element, or range of elements. The 
% beam definition data is saved in a binary (.mat) file "beamdata" at the end of 
% execution. 
% 
% In the "read" mode, the program will load the beam data written at the last 
% execution of the program and will then allow the user to modify the data for 
% BeamX. By answering "y" to this prompt, the program will copy BeamA data into 
% BeamX data, and then prompt the user (identically as described above) for data on 
% how to adjust the BeamA data in order to arrive at the BeamX data. 
% 
% The program calls the following support programs: 
% 
% BeamA_Prompt.m        — Prompts User for BeamA nominal beam data 
% ("build" mode only) 
% BeamX_Prompt.m        - Prompts User for BeamX modification beam data 
% BoundaryConditions.m ~ Prompts user for B.C.'s and applies them. 
% Assemble2Beams.m     ~ Called by Build2Beams, builds [ka] [ma] [kx] [rax], 
% plots freqs. 
% Saves data to "beamdata.mat" 
% clearspace.m ~ Clears all unnecessary variables from workspace. 
% 
% Written by J.H. Gordis 
% Modified by C.P. DeGregory 
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dispC); 
disp(' Build2Beams execution...'); 

input_flag = 'b'; 
input_flag = input(' "B"uild new beams or "R"ead from file ? (b/r) ','s'); 

% Build_or_read if loop: 

0/   ******************************************************************** 

if input_flag = 'b';   % (IF# 1) Prompt user for beam definition data 
0/******************************************************************** 

dispC   Building 2 beams from scratch...') 

BeamAJPrompt;      % Prompt for BeamA Data: run prompt script 
BeamX_Prompt;      % Prompt for BeamX Modification Data: run prompt script 
Assemble2Beams;    % Run script to assemble mass and stiffness. 
BoundaryConditions; % Prompt for, and apply boundary conditions 

% *** Save Defining Parameters for Beams *** 

dispC ...saving beam data to file') 
save beamdata connect ndof elementjength element_EI elementjmass mass_diag 
restraint_switch free_dof_set... 
num_elements num_rbm lama lamx 
%save beamdata phia phix 

0/********************************************************************* 

elseif input_flag = 'r';    % (IF# 1) file read for beam definition data 

0/********************************************************************** 

disp('   Loading 2 beams from ascii file "beamdata"...') 
load beamdata 

%      Prompt user to either build two beams from data in file, or modify beamx data: 
modify_beamx = 'n'; 
modify_beamx = input(' Modify beamX data (y/n)? ','s'); 

ifmodify_beamx=='y'; % (IF#2) 
disp('   Modify BeamX...') 
reset_beamx = 'y'; 
reset_beamx = input(' Reset BeamX properties to BeamA properties? ... 

(y/n) Vs'); 
if reset_beamx = 'y';   % Copy beamA data to beamX data: 
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element_EI(: ,2)=element_EI(:, 1); 
element_mass(: ,2)=element_mass(:, 1); 

% ...Display BeamA properties to user: 
sprintf('Number of elements: %3i',num_elements) 

end; % end reset_beamx 

BeamX_Prompt; % Prompt for BeamX Modification Data: run script 

%  End modify_beam if block (IF#2) 
end 

Assemble2Beams;       % Run script to assemble mass and stiffness. 
BoundaryConditions;    % Apply boundary conditions (that already exist) 

% *** Save Defining Parameters for Beams *** 

disp(' ...saving beam data to file') 
save beamdata num_elements connect ndof element_length element_EI... 

element_mass mass_diag restraint_switch free_dof_set... 
lama phia lamx phix num_elements connect ka ma kx mx numrbm 

0/   ****************************************************************** 

end; % End Build or read if loop IF#1 
0/********************************************************************** 

disp(' Build2Beams end.') 
% 
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BeamSensitivity.m 

% This program calculates the stiffness and mass matrix partials by finite 
% differences. That is, for example, the [k] matrix is assembled twice, once for the 
% nominal beam parameters, and a second matrix is assembled based on a small 
% perturbation of element El. 
% 
% This program makes use of the beam data created by the program 
% "Build2Beams.m," reads the data file BeamData and resets BeamX El data to be 
% the same as BeamA data. 
% 
% The user is prompted for element label numbers to be used as design variables by 
% the script "BeamSens_Prompt" which stores this element label data in the matrix 
% "EI_el_lbl." 

% 
%        EI_el_lbl: This array is (max_num_dv,num_elements), where max_num_dv is 
%        the maximum number of design variables allowed, and each design variable may 
%        include from 1 to "num_elements" elements. Therefore, the sets of elements 
%        included in two design variables may share common elements. 
% 
% Based on the number of non-zero rows in the array "EI_el_lbl," matrix partials 
% are calculated for each non-zero row. For example, to start, the first row of 
% EI_el_lbl is read, and a small perturbation in element El is applied simultaneously 
% to the elements listed in this row. 
% 
%        The script generates a matrix containing mode frequency sensitivities: 
% 
%        [sens_EI]:   num_modes * size(EI_el_lbl,l) 
% 
% 
o/0 Written by J.H. Gordis 
% Modified by C.P. DeGregory 

% 

% Start code: 
%  ■  

format long; 

dispC'); 
disp(' BeamSensitivity execution...');disp(''); 
disp(' Loading 2 beams from ascii file "beamdata"...');disp(''); 
load beamdata 
num_elements = num_elements 
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clear num_mass_dv num_EI_dv defme_M_K_dv EI_el_lbl mass_el_lbl 
clear sens_EI sens_mass 

BeamSens_Prompt;   % Prompt for DV element label definitions 

0/   ******************************************************************** 

0/ ************************* INITIALIZATION *************************** 
0/ ******************************************************************** 

mass_change = 1;      % Percentage mass change for sensitivity calculation. 
EI_change = 1;        % Percentage El change for sensitivity calculation. 
element_mass_orig = element_mass; % Copy properties over to retain them. 
element_EI_orig  = elementJEI;    % 

icnt_dv = 0; % Initialize number of DV's to zero. Will count up all DV's 

% Prompt for number of mode frequencies to generate sensitivities for: 

num_modes = input(' Enter number of elastic modes for sensitivity calculations»'); 

start_mode = num_rbm + 1;   % Skip the rigid body modes. 

0/   ******************************************************************** 

0/o ************** EI SENSITIVITY CALCULATION LOOP ****************** 
0/   ******************************************************************** 

num_EI_dv = size(EI_el_lbl,l); 

for icnt_dv = 1 :num_EI_dv; % Repeat all of this for all EI DV's defined. 

%   Resetting BeamX properties to BeamA properties...');disp(''); 
element_EI(:,2) = element_EI(:,l); 

%   Get element labels for current DV: 
Ibis = EI_el_lbl(icnt_dv,fmd(EI_el_lbl(icnt_dv,:))); 

%   Perturb EI props for all elements in "Ibis": 

element_EI(lbls,2) = element_EI(lbls,2) * (1 + (Exchange/100)); 

Assemble2Beams;   % Run script to assemble baseline and perturbed beams. 
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BoundaryConditions; % Apply boundary conditions. 

[lam_base,phi_base]=fmodes2(ka,ma); % Get modes of baseline beam 
%   Form El derivative matrices: 
k_delta = (kx - ka)/(EI_change/l 00);   % in %/l 00 

0 %    Mode freq sens loop: 
end_mode = start_mode + (num_modes -1); % Get requested number of modes. 
row_num = 0; 
for icnt_modes = start_mode:end_mode; 

row_num = row_num +1; 
sens_EI(row_num,icnt_dv) = phi_base(:,icnt_modes)' 
k_delta * phi_base(:,icnt_modes); 

end; 

* 

end; 

% End "for icnt_dv" outer loop for sensitivity calculations 
% Run script to clear out variables: 

clearspace 

% Copy element El and mass properties back into arrays: 
element_EI  = element_EI_orig; 
element_mass = element_mass_orig; 

save beamdata element_EI element_mass sens_EI 
% Save all variables to beamdata (essentially does an append to existing beamdata) 

disp(' BeamSensitivity end.') 
%   
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Bearaex.m 

% This program calculates an FRF matrix and the inverse of an FRF matrix in order 
% to identify the Artificial Boundary Condition frequencies. It loads the binary 
% (.mat) file "Beamdata" and determines the natural frequencies of the system from 
% the stiffness and mass matricies by calling the function "fmodes." The program 
% also calls the function "fOset_from_Aset" to compute the o-set from a user 
% defined a-set, as well as "fmodes" again, this time to solve for the o-set natural 
% frequencies (which correspond to the ABC frequencies). The FRF is 
% calculated as the inverse of the Impedance (H = Z-l, where Z = k - (2m). Both 
% the FRF and inverse FRF (Impedance) plots are displayed over the frequency 
% range 0 - 800 Hz. 

dispC ') 

load beamdata 

[lam,phi] = fmodes(kx,mx); 
freq = sqrt(lam)/2/pi; 

%        User is asked to input a-set 
aset - input('Enter a-set (vector form):'); 

[oset] = fOsetjErom_Aset(length(mx),aset); 

ko = kx(oset,oset); 
mo = mx(oset,oset); 

dispCA-Set Defined as:') 
aset 
disp('0-Set Frequencies') 
[lamo,phio] = fmodes(ko,mo); 
freqo = sqrt(lamo)/2/pi; 
icnt = 0; 
freq=[l :1 : 5030]; 
freqp = ifreq / 2 /pi; 

for ifreq = ifreq; 

icnt = icnt + 1; 
h = inv(kx + .001*sqrt(-l) * kx - ifreqA2 * mx); 
hx = h(aset,aset); 
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hxpll(icnt) = hx(l,l); 
% hxp22(icnt) - hx(2,2) 
% hxp33(icnt) - hx(3,3) 
% hxp44(icnt) = hx(4,4) 
% hxp55(icnt) = hx(5,5) 
% hxp66(icnt) = hx(6,6) 

zabc = inv(hx); 
zabcl l(icnt) = zabc(l,l); 
% zabc22(icnt) = zabc(2,2) 
% zabc33(icnt) = zabc(3,3) 
% zabc44(icnt) = zabc(4,4) 
% zabc55(icnt) = zabc(5,5) 
% zabc66(icnt) = zabc(6,6) 

end 

%        Plot FRF and Impedance 
elf 
figure(l) 
plot(freqp,loglO(hxpl l));grid 
xlabel('Frequency (Hz)') 
axis([0,800,-7,3]) 

figure(gcf+l) 
plot(freqp,loglO(zabcl l));grid 
xlabel('Frequency (Hz)') 
axis([0,800,-l,7]) 

save hdata freqp zabcl 1 
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Solveos.m 

% This program solves for the vector {(El} following user guidelines. It first loads 
% data which was saved after two runs of the "Build2Beams" and 
% "Beam_Sensitivity" programs. The first run is for a baseline free-free beam with 
% given element El modifications. The analytical and experimental (simulated 
% damaged) eigenvalues (lama & lamx) and the sensitivity matrix (sens_EI) are 
% stored in beamO.mat. The second run is for a beam with user defined constraints 
% at given measurement locations (a-set) and lama, lamx and sens_EI for this case 
% are stored in beaml .mat. 
% 
% Written by J.H. Gordis 
% Modified by C.P. DeGregory 

load beamO 
lamaO=lama; 
lamxO=lamx; 
TO = sens_EI; 
clear lama lamx sens_EI 

load beaml 
lamal=lama; 
lamxl=lamx; 
Tl = sens_EI; 
clear lama lamx sens El 

rerun = 'y!; 
i.j while rerun = 'y' 

% Prompt for number of Beam mode frequencies: 

%    Note: for free-free structures, only elastic modes are in T matrix 

numjmodesO = size(T0,l); 
numjmodesl = size(Tl,l); 

sprintf('Total BeamO mode sens, data avail: %3i', num_modesO) 
sprintf('Total Beaml mode sens, data avail: %3i', numjmodesl) 

dispC '); dispC For BeamO:'); 
use_all_modes = input(' Use all BeamO modes ? (y/n) » ','s'); 

if use_all_modes = 'n'; 
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disp(' Enter (elastic) mode numbers to include...') 
dispC Use MATLAB vector format> 1 3 5:7 9 ') 
usejmodesO = input('  » ','s'); 
use_modesO = eval(['[',use_modesO,']']); 

else 
use_modesO = 1 :num_modesO; 

end; 

dispC); disp('For Beaml:'); 
use_all_modes = input(' Use all Beaml modes ? (y/n)» ','s'); 

if use_all_modes = 'n'; 
disp(' Enter (elastic) mode numbers to include...') 
disp(' Use MATLAB vector format> 1 3 5:7 9 ') 
use_modesl = input('  » ','s'); 
use_modesl = eval(['[',use_modesl,']']); 

else 
usejtnodesl = l:num_modesl; 

end; 

% Prompt for number of DV's: 
% 

num_DV0 = size(T0,2); 
num_DVl = size(Tl,2); 

sprintf('Total BeamO DVs avail: %3i', num_DV0) 
sprintf('Total Beaml DVs avail: %3i', numDVl) 

% Prompt user for number of DVs to include: 
% 

disp(''); disp(' For BeamO:'); 

sprintf('Number of BeamO El DVs: %3i',num_DV0) 
use_all_dv = input(' Use all BeamO DVs ? (y/n)» ','s'); 
if use_all_dv ~= 'y'; 

dispC Enter DV label(s) to include...') 
disp(' Use MATLAB vector format> 1 3 5:7 9 ') 
use_dvO = inputC  » ','s'); 

,     use_dvO = eval(['[',use_dv0,']']); 
else 

use_dvO = 1 :num_DV0; 
end 
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disp(");disp('For Beaml:'); 
sprintf('Number of Beaml El DVs: %3i',num_DVl) 
use_all_dv = input(' Use all Beaml DVs ? (y/n)» ','s'); 
if use_all_dv ~= 'y'; 

disp(' Enter DV label(s) to include...') 
dispC Use MATLAB vector format> 1 3 5:7 9 ') 
use_dvl = input('  » ','s'); 
use_dvl = eval(['[',use_dvl,']']); 

else 
use_dvl = l:num_DVl; 

end 

% Assemble Composite Sensitivity Matrix: 

format short 

Tboth = [TO(use_modesO,use_dvO);Tl(use_modesl,use_dvl)]; 

% Calculate Frequency Error Vector for the modes retained: 

del_freq = [Iamx0(use_modes0)-lama0(use_modes0);lamxl(use_modesl)- 
lama 1 (usejnodes 1)]; 

% Solve system for DV changes: 

sprintf('Min Dim of T: %3i',min(size(Tboth))) 
sprintf('Rank of T: %3i',rank(Tboth)) 
sprintf('Condition of T: %5.3e',cond(Tboth)) 

delta_dv = Tboth \ del_freq 

bar(l: 10,abs(delta_dv)),grid 

rerun = input(' Rerun for different case ? (y/n)» ','s'); 

end;   % end rerun while loop 
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Main.m 

% This program is similar to the "beamex" program in that it computes FRF and 
% Impedance matrices. This script, however, is for a spring-mass system. In 
% particular, this program solves for the system shown in Figure 3.1. The stiffness 
% and mass matrices are computed using the function "fspringmass" and the values 
% for connectivity, mass specification and fixity. The values required for the system 
% shown, in addition to the a-set (DOF #1), are contained in the script "testdata." 
% The 1,1 elements of the FRF and Impedance matrices are plotted versus 
% frequency. 

clear 

testdata 
[k,m] = fspringmass(conn,mspec,fix); 
[lam,phi] = fmodes(k,m); 

[oset] = fOset_from_Aset(length(rn),aset); 

ko = k(oset,oset); 
mo = m(oset,oset); 

icnt = 0; 
ifreq = [0:.01:4]; 
freqp = ifreq/2/pi; 
h = zeros(size(k)); 
for ifreq = ifreq 

icnt = icnt + 1; 
h = inv(k - ifreqA2*m); 

hxpll(icnt) = h(l,l); 
%hxp22(icnt) = h(2,2); 
%hxp33(icnt) = h(3,3); 
%hxp44(icnt) = h(4,4); 
%hxp55(icnt) = h(5,5); 
%hxp66(icnt) = h(6,6); 

zabcll(icnt) = inv(h(l,l)); 
%zabc22(icnt) = inv(h(2,2)) 
%zabc33(icnt) = inv(h(3,3)> 
%zabc44(icnt) = inv(h(4,4)) 
%zabc55(icnt) = inv(h(5,5)) 
%zabc66(icnt) = inv(h(6,6)) 

end 
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orient landscape 
figure(l) 
plot(freq*2*pi,logl0(hxpl 1)), grid 
xlabel('Frequency (rad/sec)') 
axis([0,2,-2,3]) 

figure(gcf+l) 
plot(freq*2*pi,logl0(zabcl 1)), grid 
xlabel('Frequency(rad/sec)') 
axis([0,2,-3,2]) 
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Hmat.m 

% This program is used for the experimental data obtained using the I-DEAS 
% software. It takes the data stored in beamb and creates an FRF matrix as well as 
% an inverse FRF matrix for any boundary condition. The user inputs the 
% frequency range and the nodes to be used in the a-set. 
% 
% Written by C.P. DeGregory 

clear 

load beamb     % Loads data file containing complex amplitudes for each frequency data 
% point in the spectrum. 

hll=Hbase(:,l); 

% Plot the FRF for the free-free beam (There are 1601 spectral lines: one every 1.25 Hz) 

plot(0:1.25:2000,20*loagl0(abs(hll))),grid; 
axis([0,500,-40,50]); 

first = input('Enter first frequency:'); 
last = input('Enter last frequency: '); 

start = (first/1.25) + 1; 
finish = (last/1.25) +1; 

% Initialize 

icnt = 0; 
H = zeros(5*((finish-start)+l),5); 
freqp = [first: 1.25 :last]; 
Zap = zeros(length(freqp),l); 

aset = input('Enter nodes to be used in a-set (vector form):'); 

% Build H matrix 

for i = (start) : (finish) 

H((5*icnt-4):5*icnt,:) = [Hbase(i,l:5); Hbase(i,6:10); Hbase(i,ll:15);... 
Hbase(i,16:20); Hbase(i,21:25)]; 

% Build Haa matrix 

Ha((length(aset)*icnt)-length(aset)+l: (length(aset)*icnt),:) = H ((5*... 
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icnt-1) +aset, aset); 
Za((length(aset)*icnt)-length(aset)+l: (length(aset)*icnt),:) = inv(Ha((length. 

(aset)*icnt)-length(aset)+l: (length(aset)*icnt),:); 

% 1,1 Element for plotting 

Zap(icnt) = Za(((length(aset)*icnt) - length(aset)) +1,1); 

end 

plot(freqp,20*loglO(abs(Zap))),grid 
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B.        SUPPORT PROGRAMS 

Assemble2Beams.m 

% This program assembles the global mass and stiffness matrices of the two beams 
% defined in "Build2Beams" by combining element k and m matrices solved in the 
% function "fbeamkm." 
% 
% Loop over the two beams: 

for icnt_beams =1:2; 

k=zeros(ndof,ndof); 
m=zeros(ndof,ndof); 

% Loop over the number of elements in the structure: 

for elnum=l :num_elements; 

dofl=2*connect(elnum,l)-l; 
dof2=dofl+l; 
doß=2*connect(elnum,2)-l; 
dof4=dof3+l; 

% ... set up beamel function call: 

l_temp=element_length;      % Using fixed element lengths 
ei_temp=element_EI(elnum,icnt_beams); 
m_temp=element_mass(elnum,icnt_beams); 

[kbeam,mbeam]=fbeamkm(l_temp,ei_temp,m_temp); 

k(dofl :dof2,dofl :dof2)=k(dofl :dof2,dofl :dof2)+kbeam(l :2,1:2) 
k(dofl :dof2,dof3 :dof4)=k(dofl :dof2,dof3 :dof4)+kbeam(l :2,3:4) 
k(dof3 :dof4,dofl :dof2)=k(dof3 :dof4,dofl :dof2)+kbeam(3:4,1:2) 
k(dof3 :dof4,doß :dof4)=k(doß :dof4,dof3 :dof4)+kbeam(3:4,3:4) 

m(dofl :dof2,dofl :dof2)=m(dofl :dof2,dofl :dof2)+mbeam(l :2,1:2) 
m(dofl :dof2,dof3 :dof4)=m(dofl :dof2,doß :dof4)+mbeam(l :2,3:4) 
m(doß :dof4,dofl :doß)=m(doß :dof4,dofl :dof2)+mbeam(3:4,1:2) 
m(doß :dof4,doß :dof4)=m(doß :dof4,doß :dof4)+mbeam(3:4,3:4) 

% end loop over the number of elements: 
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end 

% Reassign k and m to new variables and add lumped masses 
%  

ificnt_beams= 1; 
ka = k;ma = m; 
elseif icnt_beams = 2; 
kx = k;mx = m; 

end 

% End icnt_beams loop: 
end 

clear dofl do£2 dof3 dof4 l_temp ei_temp m_temp icnt_beams 
clear k m kbeam mbeam elnum 
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BeamAPromptm & BeamProperties.m 

% This program prompts the user for Beam A data. The first inputs required are the 
% nominal physical properties. The short program file "BeamProperties" is offered 
% to the user. The data listed in "BeamProperties" is the data that was used for all 
% beams throughout this thesis. 

dispC ');disPC'); 
disp(' Enter nominal physical properties for first beam') 

props_file = 'n'; 
props_file = input(' Run "BeamProperties.m" script to define nominal properties ?. 

(y/n)»7s'); 

if props_file = 'y'; 
BeamProperties; 

else; 
totaljength   =input(' Enter the total beam length in inches: '); 
num_elements   =input(' Enter the number of elements: '); 
nominal_EI     =input(' Enter the nominal El value (lbf/inA2): '); 
nominal_area   =input(' Enter the nominal cross section area (inA2): '); 
nominal_density = input(' Enter the nominal weight density (lbf/inA3): '); 

end; 

for icnt_elements = l:num_elements; 
connect(icnt_elements,l:2) = [icnt_elements,icnt_elements+l]; 

end 

ndof=length(connect)*2+2;   % this is unrestrained beam DOF 

element_length = total_length/num_elements; 
element_EI(:,l) = nominal_EI * ones(num_elements,l); 
element_area(:,l) = nominal_area * ones(num_elements,l); 
element_density(:,l) = nominal_density * ones(num_elements,l); 
element_mass(:,l) = (element_density .* element_area * element_length)/386.4; 

% End Data input for 1 st beam: Copy data for 2nd beam: 

element_EI(:,2) = element_EI(:,l); 
element_area(:,2) = element_area(:,l); 
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element_density(:,2) = element_density(:,l); 
element_mass(:,2) = element_mass(:,l); 

% End BeamA_Prompt.m 

% 
% 

% BeamProperties.m 

% This is the file to load nominal beam data. 

totaljength   = 60; 
num_elements   =10; 
nominal_EI     = 5.5 e5; 
nominal_area   = .75; 
nominal_density = .283; 
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BeamXPrompt.m 

% This program prompts the user for Beam X data. Specifically, the user is asked to 
% choose whether to input element El modifications or to have them chosen 
% randomly. If chosen randomly, the data is saved in the binary (.mat) file 
% "changedata" and is then offered as a choice for the next run of this code. By 
% doing this, the option exists to create 2 free-free beams with unknown damage and 
% 2 a-set constrained beams with the same (but still unknown) damage. 

dispC ');disp(''); 
disp(' Modify nominal physical properties for second beam') 

% Adjust El values for second beam: 

option = u; 
option 1 = 'n'; 
change_EI = 'n'; 

change_EI = input(' Modify single/range element El values (y/n)? ','s'); 
option = input(' User defined, random, or neither (u,r,n)? ','s'); 
optionl = input(' Read previous modification values (y/n)? ','s'); 
ifoptionl =y 

load changedata 
change_EI = 'n'; 

end 

while (change_EI ~= 'n') & (option = 'u') 

disp('   Enter element label(s) for El modification') 
disp('   Use MATLAB vector format> 1 3 5:7 9 ') 
newjbls = input('   »','s'); 
newjbls = eval(['[',new_lbls,']']); % Converts string to vector of labels 

disp(' Enter El change for element range') 
EI_change = input(' Enter percentage El change (+/- %) '); 
element_EI(new_lbls,2) = element_EI(new_lbls,2)+... 
(EI_change/100) * element_EI(new_lbls,2); 

change_EI = input(' Modify another element El value (y/n)? ','s'); 

end; % end while 
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if option = Y 
numels = fix(3*rand+l); 
fori=l:numels 

newjbls = fix(10*rand+l); 
format short 
EI_change = -rand/2; 
element_EI(new_lbls,2) = element_EI(new_lbls,2)+. 
EI_change*element_EI(new_lbls,2); 

end 

save changedata numels new_lbls element_EI 
end 

% End BeamX_Prompt.m 
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BeamSensPrompt.m 

%        This program prompts the user for design variable element label defintitions. It is 
% called by the program "Beam_Sensitivity." 

max_num_dv = 50; 

o/0 *************** EJ DV ELEMENT LABEL PROMPTING ***************** 

define_EI_dv = input(' Calculate element El sensitivities (y/n)? ','s'); 

if defme_EI_dv = 'y1; 

all_elements = input(' Define El DV"s for all elements? (y/n) ','s'); 
if all_elements = 'y'; 

for icnt_elements = 1 :num_elements; 
EI_el_lbl(icnt_elements,l) = icnt_elements; 

end; 
define_EI_dv = 'n'; 

else;        %    all_elements == no, user selects elements 

for icnt_dv = 1 : maxjnumdv; 

sprintfC Enter element label(s) for El DV # %3i',icnt_dv) 
dispC  Use MATLAB vector format> 1 3 5:7 9 -- "d" to finish') 
newjbls = input('  » ','s'); 
if newjbls-='d'; 

newjbls = eval(['[',new_lbls,']']); % Converts string to 
% vector of labels 

EI_el_lbl(icnt_dv,l :length(new_lbls)) = newjbls; 
else 

break 
end; 

end;    % for icnt_dv 
end; %ifall_elements 

mass_eljbl = [ ]; 
end; 

0/o ************* END ELEMENT LABEL PROMPTING ********************* 

% End script. 
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BoundaryConditions.m 

% This program prompts the user for boundary condition information, creates a 
% vector of DOF (with respect to the unrestrained structure) and then extracts the 
% rows and columns of the complementary DOF. The program defines vector 
% "free_dof_set" containing the list of unrestrained DOF. The boundary conditions 
% for the given system are applied in this script. 

ifexist('free_dof_set')=0;   % Build free_dof_set vector 

disp(' Select a boundary condition set:') 
disp('   (1) Clamped-free') 
dispC   (2) Clamped-Clamped') 
dispC   (3) Pinned-Pinned') 
dispC   (4) User-Defined') 
disp('   (5) Free-Free") 

BC_Choice = input('» Enter choice:'); 

if BC_Choice == 1;     % Clamped-free 

free_dof_set = [3:ndofJ; 
restraint_switch = 'y'; 

elseif BC_Choice = 2; % Clamped-Clamped 

free_dof_set = [3:ndof-2]; 
restraint_switch = 'y'; 

elseif BC_Choice = 3; % Pinned-Pinned 

free_dof_set = [2:ndof-2 ndofj; 
restraint_switch = 'y'; 

elseif BC_Choice = 4; % User-Defined 

icnt_dof=0; 
add_dof=*y'; 
while add_dof = 'y'; 

bc_node = input(' Node number for restraint ? "0" to end:'); 
ifbc_node==0; 

break 
end; 
bc_coord = input(' Translation or Rotation ? (t/r) ','s'); 
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icnt_dof = icnt_dof + 1; 
ifbc_coord=='t'; 

bc_DOF(icnt_dof) = 2 * bc_node - 1; 
elseif mass_coord == 'r'; 

bc_DOF(icnt_dof) = 2 * bcjiode; 
end;   % End if-elseif block 

end; % End while add_dof 

bc_boolean = ones(ndof,l); % [1 1 1 ... icnt_dof] 
bc_boolean(bc_DOF) = zeros(length(bc_DOF),l); % Put zeros in restrained dof 
all_dofs = [ 1 :ndof]; % List of all dof 
free_dof_set = all_dofs.*bc_booleari; % Extract free dof 
restraint_switch = 'y'; 

elseif BC_Choice = 5; % Free-free beam 

free_dof_set = [1 :ndof]; 
restraints witch = 'n'; 

end; % End if-elseif choice block  

end;       % End exist block 

free_dof_set(free_dof_set==0)=[ ]; 

ka = ka(free_dof_set,free_dof_set); 
ma = ma(free_dof_set,free_dof_set); 
kx = kx(free_dof_set,free_dof_set); 
mx = mx(free_dof_set,free_dof_set); 

0/o *************** END BOUNDARY CONDITIONS.M ************ 
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C.       FUNCTIONS CALLED BY MAIN & SUPPORT PROGRAMS 

function [kbeam,mbeam] = fbeamkm(l_temp,ei_temp,m_tenip) 

%        This function computes the elemental stiffness and mass matrices defined using 
%        Galerkin's Method and Hermitian shape functions. [Ref 7] 

krowl = [12 6*l_temp -12 6*l_temp]; 
krow2 = [6*l_temp 4*l_tempA2 -6*l_temp 2*l_tempA2]; 
krow3 = [-12 -6*l_temp 12 -6*l_temp]; 
krow4 = [6*l_temp 2*l_tempA2 -6*l_temp 4*l_tempA2]; 
kbeam = (ei_temp/l_tempA3)* [krowl ;krow2;krow3;krow4]; 

mrowl = [156 22*l_temp 54 -13*l_temp]; 
mrow2 = [22*l_temp 4*l_tempA2 13*l_temp -3*l_tempA2]; 
mrow3 = [54 13*l_temp 156 -22*l_temp]; 
mrow4 = [-13*l_temp -3*l_tempA2 -22*l_temp 4*l_tempA2]; 
mbeam = (m_temp/420)* [mrowl ;mrow2;mrow3 ;mrow4]; 

function [phi_normaI,orth]=massnormal(phi,mass) 

%        This function mass normalizes a modal matrix. 

a=size(phi); 
nummodes=a(l ,2); 
phi_normal=zeros(size(phi)); 
% 
for ii=l :nummodes; 

modalmass(ii)=phi(:,ii)'*mass*phi(:,ii); 
if modalmass(ii)~=0, 

phi_normal(:,ii)=(l/sqrt(modalmass(ii)))*phi(:,ii); 
else 

phi_normal(: ,ii)=phi(: ,ii); 
end 

end 
% 
% do the orthogonality calculation: 
% 
orth=phi_normar*mass*phi_normal* 100; 
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function [omega,phi]=fmodes(k,m) 

%        This function returns a vector containing eigenvalues (rad/sec)2 and a matrix 
%        containing the mass normalized mode shapes. The mode information is sorted by 
%        frequency in ascending order. 

[v,d]=eig(m\k); 

[omega,index]=sort(diag(d)); 

[phi,orth]=fmassnormal(v(:,index),m); 

format long 
disp('FreqsinHz.:') 
dispC ') 
disp(sqrt(omega( 1 :min(length(omega), 12)))/2/pi) 
dispC ') 

function [oset] = fOset_from_Aset(ndof,aset); 

% This function determines the complementary o-set from a set [ 1:1 :ndof] and the 
% subset a-set = [x x x ...]. 
% 
% ndof: Total number of DOF. Set is labeled "nset". 
% aset: Retained DOF (proper subset of [ 1:1 :ndofJ) 

nset= [lrndofj; 
for icnt = 1 : length(aset); 

indices(icnt) = find(nset == aset(icnt)); 
end 

bool = ones(size(nset)); 
bool(indices) = zeros(size(indices)); 
oset = nset(find(bool>0)); 
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function[k,m]=fspringmass(conn,mspec,fix) 

% This function assembles the stiffness [k] and mass [m] matrices for an assemblage 
% of springs. The connectivity is established in the array 'conn', the boundary 
% conditions (fixity) are specified in the array 'fix'. The mass is specified in the 
% vector mspec. 
% 
% For example, to build the following system: 
% 
% m      2m       m 
o/0 |„////~*_////-*=////=* 

% k        k      2k 
% 
%        the connectivity array is as follows: 
% [12 
% 2 3 
% 3 4 
% 3 4] 
%        The connectivity array is therefore of dimension: 
%        (number of springs)*(2). 
% 
%        The fixity array for the above system is 
% 
% fix = [0111] 
% 
%        The fixity array is therefore of dimension: 
% (1 )* (number of nodes). 
% 
%        The mass distribution is given by mspec: 
% 
% mspec = [1 2 1] 
% 
% Themspec array is of dimension: 
% (l)*number of dynamic (free) DOF 

kspring=[l -1;-1 1]; 
ksize=length(fix); 
k=zeros(ksize,ksize); 
m=zeros(length(mspec)); 

% assemble stiffness matrix: 

for spring = 1 :size(conn,l); 
index 1 =conn(spring, 1); 
index2:=conn(spring,2); 
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k(index 1 ,index 1 )=k(index 1 ,index 1 )+kspring( 1,1); 
k(indexl ,index2)=k(indexl ,index2)+kspring(l ,2); 
k(index2,index 1 )=k(index2,indexl )+kspring(2,1); 
k(index2,index2)=k(index2,index2)+kspring(2,2); 

end; 

% zero rows and columns corresponding to boundary conditions 

indices_to_keep = fmd(fix); 

if length(indices_to_keep) ~= 0; 
k = k(indices_to_keep,indices_to_keep); 

end 

%assemble mass matrix: 

m=zeros(size(k)); 
fori=l:length(m); 

m(i,i)=mspec(i); 
end 

76 



LIST OF REFERENCES 

1. Gordis, J.H. "Artificial Boundary Conditions for Model Updating and Damage 

Detection." To appear, Journal of Mechanical Systems and Signal Processing. 

2. Gordis, J.H. "Omitted Coordinate Systems and Artificial Constraints in Spatially 

Incomplete Identification." Modal Analysis, v.ll nl July 1996, pp. 83-95. 

3. Gordis, J.H. "An Analysis of the Improved Reduced System (IRS) Model Reduction 

Procedure." Modal Analysis, v. 9 n4 October 1994, pp. 269-285. 

4. Li, S., Shelley, S., Brown, D. "Perturbed Boundary Condition Testing." Proceedings 

of the 13th International Modal Analysis Conference, v. 1,1995, pp. 902-907. 

5. Hemez, F.M. "Closing the Gap Between Modal Parameter Based and Frequency 

Response Function Based Updating Methods." Proceedings of the 13th International 

Modal Analysis Conference, v. 1, 1995, pp. 171-177. 

6. Inman, D.J. VIBRATION With Control, Measurement, and Stability, pp. 129-131, 

Prentice-Hall, Inc., 1989. 

7. Kwon, Y.W., Bang, H., The Finite Element Method Using MATLAB, pp. 235-242, 

CRC Press Inc., 1997. 

77 



78 



INITIAL DISTRIBUTION LIST 

No. Copies 

1.   Defense Technical Information Center 2 
8725 John J. Kingman Road, Ste 0944 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library  
Naval Postgraduate School 
411 Dyer Road 
Monterey, CA 93943-5101 

3. Professor J.H. Gordis, Code ME/Go  
Department of Mechanical Engineering 
Naval Postgraduate School 
Monterey, CA 93943 

4. Department Chairman, Code ME  
Department of Mechanical Engineering 
Naval Postgraduate School 
Monterey, CA 93943 

5. Naval Engineering Curricular Office (Code 34). 
Naval Postgraduate School 
Monterey, CA 93943 

LT Christopher P. DeGregory. 
173 Bridle Path Circle 
Ludlow, MA 01056 

79 


